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The Avrami model of solid-state reactions or transformations has frequently been presented and 
compared With other stochastic models. The equation often applied is shown to be merely a 
simplification of the full Awami model equation (FAME). A convenient proceffure for application 
of the FAME to the kinetics of solid-state reactions is proposed. 

Several stochastic models have been proposed to describe the kinetics 
of phase transformations or chemical reactions in solids. 

Erofeyev [1 ] discussed the probability of molecular events and reactions 
in a collection containing a large enough number of molecules to permit 
the use of statistics. To apply this to solid-state reactions he had to introduce 
a few simplifying assumptions which can never be true. For example, he 
neglected intercollisions between the growing nuclei of the product phase. 
The Erofeyev equation 

- In ( 1 - f ) = k t  p (1) 

is the same in form as tha t  proposed previously by Johanson-Mehl and 
Kolmogorov, and expresses a relation between the fractional conversion f 
and the reaction time t. 

Mampel [2] assumed the random nucleation of the product phase grains, 
as well as limitation of the growth of these grains as a result of their intercol- 
lisions. Though these assumptions are quite acceptable, Mampel was not able 
to solve the problem. Nevertheless, in the case of spherical grains, he sug- 
gested three separate equations for the initial, the intermediate and the final 
stage o f  the reaction, respectively. 

t h e  problem seems to have been generally solved by Avrami [3]. He found 
a relation between the real and the idealized case, analysing all the unreal 
cases by Volterra methods. To prove the resulting equation, Avrami had to 
assume that the product grains are randomly distributed throughout the 
whole substrate phase, or even only throughout the transformation zone. 
With the additional assumption kg/kn = const, concerning the linear growth 
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velocity tog and the nucleation frequency kn, the full Avrami model equation 
(FAME) was obtained [4]: 

- l n  (1- f )  = BdFd (x) (2) 

The functions Bd and Fd, and dimensionless time x, are defined as follows: 

Bd --- d! s No (kg /kn )d 

Fd(x) = ( - - I )  d+l [e -x --1 + x. . .+(--1)  a§ (x d /d ! )  

(3) 

(4) 

t 

x -~ f kn dt (5) 
o 

No is the initial concentration of active sites, d is the number of dimensions 
into which the grains expand, and s is the shape factor. 

A few attempts have been made to develop the Avrami model by omitting 
the condition of constant quotient kg/kn. Ziabicki [5] considered mainly 
the crystallization of polymers. Smith and Fletcher [6] restricted their 
attempts to the case of metal deposition on electrodes. 

Johanson-Mehl-Avrami-Kolmogorov-Erofeyev equation as simplified 
A v r a m i  e q u a t i o n  ( S A E )  

The FAME excludes the application of linear regression methods. Nev- 
ertheless, if the reaction time approaching zero or infinity, this equation 
resolves itself into the linearized equations: 

F/d+l 
- In ( l - f )  = - - B d  t d+l = ko t d+l (6)  

(d+l)! 

n d 
- I n ( l - f ) - -  d! Bd td ~---k~td (7) 

Though ko differs from k ,  these two equations are usually replaced by 
only one, which is the same in form as the Erofeyev equation (and others). 
Hence, in books [7] it is called the Johanson-Mehl-Avrami-Kolmogorov-  
-Erofeyev equation, and has been applied in a huge number of kinetic 
measurements, especially to describe the crystallization of polymers [8]. This 
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convenient equation has also been applied to polythermic measurements, 
and computer  programs for DTG/DTA [9-11 ] and DSC [ 12] measurements 
have been worked out. Then, from the temperature-dependence of k, the 
activation energies of  reactions have been determined. 

However, the equation parameters k and p do not have unequivocal phys- 
ical meaning. They are only the parameters of the SAE. This is the reason 
why, if the experiments only obey a broader range of  variation o f f ,  distinct 
deviation of  the results from the SAE predictions is observed. From our 
point  of  view, it is much better to try to apply the FAME than to improve 
the consistency by fragmentation of the extent of  a reaction curve, and by 
allowing fractional values of p, quite in opposition to the Avrami model 
concepts. 

A proposal to apply the FAME on the basis 
of  the Avrami model  properties 

A previous discussion has shown [8] that, according to the Avrami model, 
each kinetic curve should have an inflection point. This point is located 
within the borders determined by the value of d. Collections of all the 
possible inflection points for the particular values of  d are presented in 
Fig. 1. 
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Fig. ! Funct ions  of/~ vs. log xi, representing all the possible inflection points for d - -  I, 2 and 3. 
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The shapes of the kinetic curves depend on the rivalry parameter R: 

R = k n  tg (9) 

tg --- (sNo kd) -1/d (10) 

Parameter R is a measure of the rivalry between growing grains and grains 
undergoing nucleation in relation to the substrate phase. Parameter tg has 
the physical meaning of the unlimited growth time within which No grains 
growing without any limitation will consume a volume unit of the substrate 
phase. 

Several examples of kinetic curves are presented in Fig. 2. The strong 
influence of R on the shapes of the kinetic curves is clear. The shape can 
vary from that of a first-order kinetic equation (R ~- 0.1) to that of a zero- 
order equation (R = 40). 
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Fig. 2 Kinet ic curves for  d ~ | ,  and for  several values o f  R. The additona[ curve (.~) is drawn through 
the inf lect ion points o f  all the possible kinet ic curves. 

Our proposal concerning how to apply the FAME arises from the model 
properties. In the first step, the coordinates of the inflection point are 
determined, most conveniently from the maximum in the rate vs. time curve. 
These coordinates determined d, and consequently the set of relations be- 
tween all the model parameters. 

These coordinates are then used as the starting point of the nonlinear 
optimization procedure. In this way, the values of R and kn which give the 
best fitting can be found, followed by all the other model parameters. The 
proposed procedure is, distinctly more accurate and convenient than the 
graphical method recommended by Delmon [ 13 ]. 
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It should be stressed that the parameters of the FAME have physical 
meaning, and are measurable in another way. Such measurements have 
been carried out during recent months.  Although not  all of these ex- 
periments have been finished, the result so far obtained have always been in 
accordance with the predictions coming from the FAME. These studies 
concern the crystallization of  certain polymers [8], the carbidization of  iron 
crystallites in relation to the parasitic processes in catalysis [14], and the 
oxidative corrosion of  calcined cokes [ 15 ]. 
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Zusammenfassung - Das Avrami'sche ModeU yon FestkOrperreaktionen wurde h~iufig dargestellt und 
mit anderen stochastischen Modellen verglichen. Hier wird gezeigt, dass die h~iufig verwendete 
Gleichung eine Vereinfachung der Vollst~indigen Avrarni'schen ModeUgleichung (FAME) darstellt. Die 
Anwendung der FAME auf die Kinetik yon Festk6rperreaktionen wird vorgeschlagen und eine geeignete 
Verfahrensweise empfohlen. 

PE310ME -- TBep~oTe.qbHble peaxxmn ~nn mpespan~eHH~ npe~IcTaBJIeHh! Mo~enbto AspaMH, KOTOpa~ 
COHOCTaa.ueHa C ~0yFHMI4 CTOXaCTHLIeCKI4MH Mo~e.~IMH. noHa3aHo, qTO qaCTO HCFIO~I~3yeMoe ypasHe- 
HHe ABpaMH ~B.;IHeTC~I TO~hKO ynpo~eHHhtM BapHaHTOM nOnHOrO ypaeHem~ MO~eJIH ABpaMH. [lpe/I- 
~IO~eHO rlpHMeHeHHe TaKOFO ypaaHeHHa K KHHeTHI~e TBep~oTeflbHhIX peaKtm~, Hapfl~y C O61,IqHbIM 
MeTO~OM ero npnMefteH~. 
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